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Outline   
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   Develop a suite of inverse modeling tools for improving the 
exploitation of information content from observational datasets 


   Develop a generic optimization infrastructure within National 
Aeronautics and Space Administration (NASA) LIS (with a suite 
of optimization algorithms) 

•   Improve the land surface model (LSM) forecast accuracy by 
improving the representation of model parameters 

•   Improve the efficiency of data assimilation approaches 
through unbiased model state prediction  


   Develop a suite of uncertainty modeling tools in LIS  

•   Quantify the effects of various uncertainties (model 
parameters, model structural error, measurement errors in 
input) in the prediction  

Motivation
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   A system to study land surface 
processes and land-atmosphere 
interactions 

Land Information System (LIS) 


   LIS is used as Problem Solving 
Environment (PSE) for hydrologic 
research and as a Decision Support 
System (DSS) for end use applications 


   NASA’s 2005 software of the year 
award 


   Used by the Air Force Weather Agency 
(AFWA) as the operational land surface 
modeling system  


   Integrates satellite- and ground-based 
observational data products with land 
surface modeling techniques 


   Capable of modeling at different spatial 
scales 
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   A comprehensive, sequential data assimilation 
subsystem based on NASA (Global Modeling and 
Assimilation Office) GMAO infrastructure 

•   Advanced algorithms such as the Ensemble 
Kalman Filter (EnKF) 

•   Interoperable system that allows the  
integrated use of multiple land surface 
models, multiple observations and multiple 
data assimilation algorithms 

•   Used in SMAP (Soil Moisture Active Passive 
Mission) OSSEs and Level-4 assimilation 
studies 

Key LIS Capabilities 


   Coupled land-atmosphere systems that employ 
LIS as the land surface component  (earlier 
Advanced Information Systems Technology 
(AIST) funded work) 

•   LIS-WRF (Weather Research and 
Forecasting model) 

•   LIS-GCE (Goddard Cumulus Ensemble model) 
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LIS modes of operation 

WRF
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Need for an optimization infrastructure 


   Data Assimilation only “adjusts” model states, does not 
correct inherent model behavior 


   Accuracy of model forecasts are sensitive to model parameters 


   Some parameters are not easily measurable (hydraulic conductivity, stomatal resistance, 
aerodynamic resistance) and their relationship at different spatial scales is different 


   Existing parameter representation in land surface models are based on tabular results 
from point samples, and are indirectly represented through categorical data such as soil 
texture and vegetation class 


   Data Assimilation methods rely on unbiased model predictions 


   Optimization will enable the adaptive specification of data assimilation error 
parameters 

Use observational information to estimate model parameters 

In addition ... 



8


Spectra of optimization algorithms/ search strategies 

(Good for convex problems) (Good for non-convex problems) 
Random search  Deterministic search 

Goal: To incorporate a suite of optimization 

algorithms that capture the spectra of search 

strategies 
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Parameter estimation  

Model - Actual = Residual 

Vector of residuals:  

E.g., “least squares” measure:  

Measure Z for comparing quality of fit: 

Optimization Formulation 

Resulting solution is best fit 
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Test case 


   The study used in Santanello et al. (2007) is chosen 
as the case study to exercise the LIS optimization 
subsystem. 


   Objective: Parameterize soil properties for 
estimation of soil moisture. 


   Observations: Estimates of near surface soil 
moisture derived from passive (L-band) microwave 
remote sensing (using NASA’s push broom 
microwave radiometer - PBMR) during six dates 
during Monsoon ’90 experiment (23 July - 9 Aug, 
1990) in Southeastern Arizona.  


   Noah land surface model employed at 40m spatial 
resolution across the Walnut Gulch experimental 
watershed.  


   Optimization simulations adjust the sand, clay soil 
fractions, which in turn control the hydraulic 
properties through the use of pedotransfer 
functions (PTF).  

Lucky Hills


Kendall
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Model simulations with default parameters 

Site 1: Lucky Hills  Site 5: 
Kendall 
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Noah  
Land Surface Model 

Walnut Gulch 
Station Data 

Noah soil moisture PBMR 
soil moisture  
observations 

sand, clay 
fractions 

: porosity 
: saturated matric potential 

: saturated hydraulic conductivity 
:pore size distribution index 

Parameter estimation schematic for theTest case  
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Comparison of solutions 

Site 1: Lucky Hills  Site 5: Kendall 
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Need for an uncertainty estimation  
infrastructure 


   Beyond the best fit (Equifinality) - Optimization algorithms aim at generating a single 
optimum (best fit) solution. In contrast, uncertainty estimation tools generate “ensemble” 
of parameter sets.  


   There may be many different parameter sets within a chosen model structure that may be 
acceptable in reproducing observed behavior. 


   Posterior prediction - Uncertainty estimation algorithms incorporate different sources of 
uncertainty into probabilistic predictions.  


   Knowledge of uncertainty can help in the risk assessment for decision making (e.g. uncertainty 
in soil moisture predictions can be used in deciding irrigation practices).  


   Preposterior analysis - Bayesian analysis used to investigate the value of data from 
proposed data efforts. This can assess the value of proposed observing systems in an 
Observation System Simulation Experiment (OSSE) setting. 


   e.g. What is the added benefit of additional soil moisture observations from SMAP?  


   Land surface model predictions are subject to uncertainties in model 
parameters, input forcing and model structure - the typical 
deterministic approach to modeling does not address these issues.  
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Uncertainty modeling 


   Optimization algorithm solves for the best fit. 


   In conducting uncertainty analysis, we acknowledge that other solutions have 
probability.  


   How do we correctly generate an ensemble of such solutions (An ensemble that 
reflects the unknown posterior distribution)? 

Bayesian Analysis 



16


Bayes’ rule 


   Bayesian inference involves using observations to update/infer the 
probability that hypothesis (set of parameters) is true.  

Array of unobservable, uncertain 
model parameters  

Observations 

A particular model “fit” of  

Exceptionally computationally  
expensive to evaluate with  
standard integration methods 

Prior  
probability of  Posterior  

probability of  

Probability of 

} } 
Likelihood 

} 
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Uncertainty estimation algorithms - MCMC 


  Markov Chain Monte Carlo (MCMC) method is a stochastic 
simulation that is based on constructing a Markov chain that 
has the desired distribution as its target (posterior).  


  After a large number of iterations, the frequency of the 
states of the chain is an estimate of the target distribution. 


  The main challenge with MCMC is in reducing the number of 
iterations required to converge to an equilibrium distribution. 


  Different implementations of the algorithm based on 
different proposal strategies: Metropolis-Hastings, Gibbs, 
DREAM, etc. 
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Testcase for Uncertainty Estimation simulations 

Noah  
Land Surface Model 

Walnut Gulch 
Station Data 

Noah soil moisture PBMR 
soil moisture  
observations 

: porosity 
: saturated matric potential 

: saturated hydraulic conductivity 
:pore size distribution index 
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Beyond the best fit/“Equifinality” of solutions 

Sample soil moisture simulations generated by MCMC 
(High probability solutions contrasted with the best fit solution) 

29% 
25% 
20% 
19% 
32% 

Percentages 
represent the 
relative merit of 
alternate solutions 
compared to the 
optimal  
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Posterior parameter distributions 

Samples in 2-parameter space show the reduction in uncertainty with the 
incorporation of observational information 
Red dots represent the PE solution 
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Posterior parameter distributions 

The parameter distribution reveal cross correlations between parameters, 
some stronger than others 
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Probabilistic prediction 

LIS 

(a)
 (b)


(a)   The soil moisture time series 
with the PE solution (dashed 
line) and the 5th and 95th 
percentiles of the predictive 
distribution. 

(b)    Predictive distribution at the 
last time step; the spread is 
approximately 15% of the 
dynamic range of soil moisture.  
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Summary  


   A flexible infrastructure for optimization and uncertainty modeling 
has been developed with the Land Information System.  


   The infrastructure supports multiple optimization algorithms, 
different types of optimization problems and different types of 
objective function evaluation approaches/metrics. 


   The implementation of the algorithms has been verified using test 
cases of varying complexity.  


   The development of the optimization subsystem enables increased 
exploitation of the information content from observations. 


